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Abstract: Algebraic equations were derived for plotting theoretical titration curves involving argentometric 
titration of binary halide mixtures. These generic equations are applied to three cases of binary halide mixtures in 
spreadsheet programs. The results are presented graphically as plots of half-cell potential versus volume of the 
titrant. This approach may serve as a more effective and logical method of showing students how to simulate a 
complex system involving multiple equilibria. 

Introduction 

To show students what transpires during a titration process, 
many analytical chemistry textbooks [1–5] present titration 
curves in detail. The  major task is  to unveil a unique  
property of the titration medium during the entire titration 
process. Away from the equivalence point the concentration of 
the titrant in the titration medium does not vary much; 
whereas, near the equivalence point it changes drastically. The 
detection of the equivalence point is, therefore, possible by 
choosing an indicator or a probe that reflects this unique 
change in concentration of the titrant. 

While such an analysis may easily be accepted by students 
in cases involving a single analyte, it is often intimidating 
when a binary system, that is a system containing two analytes, 
is under discussion. As analytical chemistry textbooks [6, 7] 
often discuss multiple equilibria in depth, it is conceivable that 
one can extend this knowledge and apply it to the analysis of 
binary analyte systems. 

Due to advancements in computer hardware and software 
technologies, utilization of spreadsheet programs in teaching 
analytical chemistry has become a trend in many textbooks. By 
using a spreadsheet program, many tedious and repetitive 
algebraic calculations can be performed by a computer within 
seconds. With this burden removed, both teachers and students 
can focus on the underlying chemical principles. Furthermore, 
it is also easy to present the results graphically to enhance 
students’ learning through visual experience. One textbook [8] 
shows students how to derive equations based on mass-
balance equations and solubility constants to construct the 
titration curve of a mixture of chloride and iodide titrated with 
a standard silver nitrate solution. The example is a good one; 
however, the approach is somewhat different from an 
experimenter’s perspective. In a volumetric titration, the 
experimenter controls only two variables, namely, the 
concentration and added volume of the titrant. The former is 
established when the standard solution is prepared before the 
titration process starts. This leaves only one variable, the 
volume of the titrant, that can be controlled by the 
experimenter. It would be more realistic, therefore, to 
approach the problem from the question of “what changes are 
caused by the addition of a specific amount of the titrant 
(AgNO3 solution) in an argentometric precipitation titration?” 
The answer is the equilibrium concentrations of Ag

+
(aq) and 

the two halide ions, after each addition of a specific amount of 

the AgNO3(aq) titrant. Once the problem is analyzed and 
understood, one may start solving it. 

Discussion 

Dividing the Titration Curve into Two Regions. A closer 
look at an argentometric titration of a binary halide mixture 
reveals the existence of two different regions. Initially, only 
the halide ion with the smaller solubility product will 
precipitate when Ag

+
(aq) is added. The second halide ion 

begins to precipitate with Ag
+
(aq) only after the concentration 

of the first halide ion decreases to a value where the second 
halide ion becomes competitive. It is apparent that conditions 
governing these two regions are quite different. At the initial 
stage, only one solubility equilibrium is involved; whereas, 
there are two solubility equilibria to be considered during the 
rest of the titration. It is imperative, therefore, to find the 
dividing line. 

Before getting into the mathematics in detail, a few 
notations and terms need to be defined. These are listed below. 

A = the molar concentration of the prepared standard AgNO3(aq) 
X = the molar concentration of the analyte X

−
(aq) in the original 

mixture 
Y = the molar concentration of the analyte Y

−
(aq) in the original 

mixture 
A′  = the fictitious molar concentration of Ag

+
(aq) 

X ′  = the fictitious molar concentration of the analyte X
−
(aq) 

Y ′  = the fictitious molar concentration of the analyte Y
−
(aq) 

Aδ  = the molar concentration of Ag
+
(aq) arising form dissolution 

of AgY(s) 
[Ag

+
] = the equilibrium molar concentration of Ag

+
 (aq) 

[X−] = the equilibrium molar concentration of the analyte X
−
(aq) 

[Y
−
] = the equilibrium molar concentration of the analyte Y

−
(aq) 

K1 = Ksp(AgX) 
K2 = Ksp(AgY) 

We also use AgX to represent the more soluble precipitate 
and AgY the less soluble one such that K1 > K2. The term 
“fictitious concentration” (i.e., A′ , X ′ , and Y ′ ) refers to the 
calculated concentration of either Ag

+
 or halide if no 

precipitation reactions were to occur. Because the same 
equilibrium condition may be attained through various routes, 
using these “fictitious concentrations” as the initial condition 
makes the calculations easier. 
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Table 1. Stoichiometric Analysis of the Solubility Equilibrium (2e) 

 Ag+ + Y-  AgY(s) 

Original: A  Y  -- 
If no reaction after 
mixing: 

A'  Y'  -- 

Changes due to 
reaction: 

- y  - y  + Solid 

Equilibrium: A' - y  Y' - y  Solid 
 

Where Is the Dividing Line? There are two possible 
precipitation reactions. The first precipitation reaction involves 
analyte X

−
 and titrant Ag

+
: 

 Ag X+ −+ AgX( )s ; (1) 

whereas, the second precipitation reaction involves analyte Y
−
 

and the titrant Ag
+
. 

 Ag Y+ −+ AgY( )s . (2) 

Hence, two corresponding solubility equilibria are under 
consideration are: 

 AgX( )s Ag X+ −+ ; 1 [Ag ] [X ]K + −= ⋅  (1e) 

and 

 AgY( )s Ag Y+ −+ ; 2 [Ag ] [Y ]K + −= ⋅ . (2e) 

Once all terms are defined, the first task is to find the 
dividing line. This does not seem difficult because the 
solubility products are known. Because K1 > K2, initially only 
the second precipitation reaction takes place. The analyte X

−
 

will not precipitate until the reaction quotient exceeds its 
corresponding solubility product K1. 

Region I: [ ]{ }1( )A Y A X Kδ′ ′ ′− + ⋅ < , only the second 

equilibrium is present. 

Region II: [ ]{ }1( )A Y A X Kδ′ ′ ′− + ⋅ ≥ , both equilibria (1e) 

and (2e) coexist. 
The term inside the square brackets represents the remaining 

Ag+ concentration if only the second equilibrium is attained, 
and it consists of two terms. The first term, ( )A Y′ ′− , 
corresponds to the concentration of the excess Ag+ if the 
second precipitation reaction is complete. The second term, 

Aδ , corrects for the slight incompleteness of this precipitation 
reaction. The exact answer to the condition will become 
apparent after a detailed analysis of region I. 

Region I: Presence of the Solubility Equilibrium (2e) 
Only. Before analyte X

−
 becomes competitive, the only 

reaction occurring in the titration medium is the precipitation 
reaction between Ag

+
 and analyte Y

−
, namely reaction 2. 

Under this condition, equilibrium concentrations for all the 
species involved can be derived according to the stoichiometry 
set forth by the chemical equation (see Table 1). 

The entries headed “Equilibrium” are derived equilibrium 
concentrations based upon the assumption that an amount y of 
Ag

+
 and of Y

−
 are consumed before reaching equilibrium. To 

satisfy the equilibrium condition, the reaction quotient of the 
reverse reaction must equal the solubility product, that is 

 2( ) ( )A y Y y K′ ′− ⋅ − = . (3) 

The above equation can be expanded and rearranged to a 
quadratic equation in y. 

 2
2( ) ( ) 0y A Y y A Y K′ ′ ′ ′− + + − =  (4) 

The only logical solution to this equation is determined 
based upon existing chemical information of the system. 

 
2

2( ) ( ) 4

2

A Y A Y K
y

′ ′ ′ ′+ − − +
=  (5) 

Once y is determined, the equilibrium concentrations of all 
the relevant species can be found. 

 Titrant Ag
+
:  [Ag ] A y+ ′= −  (6) 

 Analyte X
−
:  [X ] X− ′=  (7) 

 Analyte Y
−
:  [Y ] Y y− ′= −  (8) 

The Dividing Line, an Exact Answer. As discussed 
previously, to find the condition of the dividing line one needs 
to examine whether the reaction quotient of AgX exceeds its 
solubility product after the second solubility equilibrium has 
been reached. Under this specific circumstance, the 
aforementioned term inside the square brackets equals 
( ' )A y−  and condition can be worked out as follows. 

Region I, 
2

2
1

( ) ( ) 4

2

A Y A Y K
X K

 ′ ′ ′ ′− + − +
 ′⋅ <
  

: only 

equilibrium (2e) is present. 

Region II, 
2

2
1

( ) ( ) 4

2

A Y A Y K
X K

 ′ ′ ′ ′− + − +
 ′⋅ ≥
  

: both 

equilibria (1e) and (2e) coexist. 

Region II: Presence of Both Solubility Equilibria, (1e) 
and (2e). As the titration proceeds further, the analyte X

−
 

eventually starts to compete against the analyte Y
−
 for the 

added Ag
+
, and two solubility equilibria coexist. The 

equilibrium concentrations of all species involved can be 
derived based on the stoichiometry of both precipitation 
reactions (see Table 2). 

The entries headed “Equilibrium” are derived equilibrium 
concentrations based on the assumption that x of analyte X−, y 
of analyte Y−, and thus ( )x y+  of Ag

+
 are consumed before 

reaching equilibrium. To satisfy both solubility equilibria, the 
following two algebraic equations exist. 

 1[ ( )] ( )A x y X x K′ ′− + ⋅ − =  (9) 
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Table 2. Stoichiometric Analysis of Two Co-existing Equilibria, (1e) and (2e) 

 AgY(s)  X- + Ag+ + Y-  AgY(s) 

Original:  --  X  A  Y  -- 
If no reaction after mixing:  --  X'  A'  Y'  -- 
Changes due to reaction: + Solid  - x  -  (x +y)  - y  + Solid 
Equilibrium: Solid  X' - x  A' –  (x + y)  Y' - y  Solid 

 
Argentometric Titration Curve for a Mixture of Chloride and Iodide
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Figure 1. Calculated argentometric titration curve of a mixture of 
chloride and iodide, using the equations derived in this article. 
Concentrations of chloride, iodide, and the titrant (silver nitrate) are 
exactly 0.02000 M. The half-cell potential (at 25 °C) of a silver 
indicator electrode is plotted against the volume of AGNO3 added. 
Region I starts from X = 0.00 ML and ends where the titration curve 
shows an abrupt change around the first equivalence point. Region II 
covers the rest of the titration. 

 2[ ( )] ( )A x y Y y K′ ′− + ⋅ − =  (10) 

Expanding and rearranging the sum of equations (9) and 
(10), a quadratic equation in (x + y) is obtained. 

2
1 2( ) ( )( ) ( ) 0x y A X Y x y A X A Y K K′ ′ ′ ′ ′ ′ ′+ − + + + + + − − =  

  (11) 

The only logical root of (x + y) for the above equation is 
thus obtained through careful evaluation of the titration 
medium. 

2
1 2( ) ( ) 4 4

( )
2

A X Y A X Y K K
x y

′ ′ ′ ′ ′ ′+ + − − − + +
+ =  (12) 

Dividing equation (9) by equation (10) and rearranging the 
resulting quotient yields another equation that describes the 
relationship between x and y. 

 1 1

2 2

K K
x y Y X

K K

   ′ ′= ⋅ − ⋅ +   
   

 (13) 

From equations (12) and (13), y can be obtained directly, 
and x is simply the difference between equations (12) and (13). 

2
1 2 1

2

1

2

( ) ( ) 4 4

2

1

A X Y A X Y K K K
Y X

K
y

K

K

′ ′ ′ ′ ′ ′+ + − − − + +  ′ ′+ ⋅ − 
 =

+
 

  (14) 

Upon solving for x and y, the equilibrium concentrations of 
all relevant species are readily obtained. 

 Titrant Ag+:  [Ag ] ( )A x y+ ′= − +  (15) 

 Analyte X−:  [X ] X x− ′= −  (16) 

 Analyte Y−:  [Y ] Y y− ′= −  (17) 

When a metallic silver electrode is used to probe the 
concentration of Ag

+
 in the titration medium, its half-cell 

reaction and potential (at 25 °C) are given as follows. 

 Ag e+ −+ Ag( ); 0.799s E V° =  (18) 

 ( )0.05916 log[Ag ]E E V += ° + ⋅  (19) 

Data 

Equations derived from the Discussion section were used in 
Microsoft EXCEL  to calculate the necessary data points for 
each theoretical titration curve. Figures 1 through 3 show three 
sets of titration curves for cases where the concentrations of 
Ag

+
, Cl

−
, and I

−
 are exactly 0.02000 M. Students may, at first, 

assume an approximation by considering only one single 
equilibrium at a time. Figures 4 through 6 show calculated 
titration curves based upon this approach under the same 
conditions. Due to the large difference (2 × 10

6
 times) in 

solubility constants for AgCl and AgI, the two calculated 
titration curves for the mixture of Cl

−
 and I

−
 (Figure 1 versus 

Figure 4) do not show any significant difference, whether or 
not the second equilibrium is taken into consideration. As the 
difference in solubility constants becomes smaller, aberration 
begins to appear. The spikes around the equivalence points 
shown in Figures 5 and 6 are aberrations caused by neglecting 
the existence of the other solubility equilibrium in each case. 
Closely examining the data on the spreadsheets reveals the 
nature of these aberrations. In the mixture of bromide and 
iodide, bromide ions begin to precipitate with Ag

+
 just a little 

before reaching the equivalence point of AgI. This 
coprecipitation phenomenon is easily explained by a difference 
of about six thousand times in the solubility products of AgBr 
and AgI. The titration error attributed to the coprecipitation is 
less than one percent in this case. In the mixture of chloride 
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Argentometric Titration Curve for a Mixture of Bromide and Iodide
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Figure 2. Calculated argentometric titration curve of a mixture of 
bromide and iodide, using the equations derived in this article. 
Concentrations of bromide, iodide, and the titrant (silver nitrate) are 
0.02000 M exactly. The half-cell potential (at 25 °C) of a silver 
indicator electrode is plotted against the volume of AGNO3 added. 
Region I starts from X = 0.00 ML and ends where the titration curve 
shows an abrupt change around the first equivalence point. Region II 
covers the rest of the titration. 

Argentometric Titration Curve for a Mixture of Chloride and Bromide
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Figure 3. Calculated argentometric titration curve of a mixture of 
chloride and bromide, using the equations derived in this article. 
Concentrations of both analytes (chloride and bromide), as well as 
silver nitrate are exactly 0.02000 M. The half-cell potential (at 25 °C) 
of a silver indicator electrode is plotted against the volume of AGNO3 
added. Region I starts from X = 0.00 ML and ends where the titration 
curve shows an abrupt change around the first equivalence point. 
Region II covers the rest of the titration. 
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Figure 4. Calculated argentometric titration curve for a mixture of 
chloride and iodide if only one single precipitation reaction is 
considered in each region. Concentrations of both chloride and iodide 
are 0.02000 M as is that of silver nitrate. The half-cell potential (at 25 
°C) of a silver indicator electrode is plotted against the volume of 
AGNO3 added. 

Argentometric Titration Curve for a Mixture of Bromide and Iodide

-100

0

100

200

300

400

500

600

700

800

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

Volume of AgNO3 Added/mL

E
[A

g(
I)

|A
g(

0)
]/m

V

 
Figure 5. Calculated argentometric titration curve of a mixture of 
bromide and iodide if only one single precipitation reaction is 
considered in each region. Concentrations of both bromide and iodide 
are exactly 0.02000 M as is that of silver nitrate. The half-cell 
potential (at 25 °C) of a silver indicator electrode is plotted against the 
volume of AGNO3 added. 
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Figure 6. Calculated argentometric titration curve of a mixture of 
chloride and bromide if only one single precipitation reaction is 
considered in each region. Concentrations of both chloride and 
bromide are 0.02000 M as is that of silver nitrate. The half-cell 
potential (at 25 °C) of a silver indicator electrode is plotted against the 
volume of AGNO3 added. 

and bromide, chloride ions begin to precipitate with Ag
+
 much 

before reaching the equivalence point of AgBr. Again, this 
coprecipitation phenomenon is easily rationalized with a 
difference of less than four hundred times in the solubility 
products of AgCl and AgBr. A titration error of two percent 
may be attributed to this coprecipitation phenomenon. 

It is hoped that students may gain better understanding of 
the titration curve through this spreadsheet exercise. In 
addition, this also may serve as a model to show students how 
to tackle a complicated chemistry problem using rather simple 
algebra. 
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